Dr. Robert Klement, GSU/CHARA (Host: D. Gies)

September 19, 2017 @ 3:00 pm – 4:00 pm
NSC 218

Revealing the Structure of the Outer Disks of Be Stars

Classical Be stars possess self-ejected gaseous circumstellar disks governed by viscous forces. The structure of the inner parts (<20 stellar radii) of these disks is well explained by the viscous decretion disk model (VDD), which is able to reproduce multi-technique observable properties of most of the so-far studied objects. Due to the nature of the emission mechanism responsible for the IR and radio continuum excess (free-free emission), the outer parts of the disks are observable at radio wavelengths only. A steepening of the spectral slope somewhere between infrared and radio wavelengths was reported for the handful of Be stars that were observed in radio, but the physical reason for this feature remained mostly unknown.

I will present results from the multi-technique modeling of beta CMi, for which we obtained new sub-mm data from the APEX telescope. The SED turndown observed in beta CMi could be reproduced only when assuming a truncated disk. The most plausible explanation for the truncation is the presence of a faint companion, which has been just independently confirmed as predicted via RV analysis of the H-alpha line. Results from the SED modeling of additional stars, for which have new multiband VLA data, will be presented. All the studied disks are found to be truncated, while only one of the objects is a previously known binary. The detailed structure of the radio SED revealed by the VLA observations allow for studying the exact nature of the disk truncation. The truncation is clearly not as sharp as expected, and certain features indicate that the disks may extend beyond the orbits of the companions, thus offering a possibility that Be disks are actually circumbinary disks.